NAVISP-EL1-018

Low-RF

Fast Deployable Systems for Emergencies in Difficult Environments

Final Presentation 10/06/2022

Agenda

Introduction

Project plan

Work summary

Main conclusions and way forward

Questions & Answers

Project Introduction

Project objective

· Crisis modes are unexpected and can take place anywhere and anytime.

"[...] it is clear that current solutions, especially GNSS-based ones, are not adequate to support the navigation functions required for crisis modes."

Page 3

GMV NSL & AAU @ ION GNSS+ 2022

- The objective of this contract is to design and develop a PoC for a Civilian and Assets Recovery System (CARS), conformed by two main elements:
 - Crisis Recovery and Emergency Assistance and Management segment (CREAM). System transmitter.
 - Device for the Recovery and Emergency Assistance and Management segment (DREAM). System receiver.

10/06/2022

Agenda

Introduction

Project plan

Project overview

Project work structure

Overview of conducted tasks

Work summary

Main conclusions and way forward

Questions and Answers

Project plan

Project overview

Project plan

Project work structure

Project plan

Overview of conducted tasks

WP 1000

CARS Use Cases, System
Requirements and
System Specification Definition

WP 2000

CREAM and DREAM
Breadboard Detailed Design

WP 3000

CREAM & DREAM Breadboard

Development, Integration

and Factory Testing

WP 4000

CREAM & DREAM PoC
Breadboard Validation

WP 5000

Final Reporting,
Acceptance Testing and
Exploitation Assessment

- Review of existing recovery systems.
- Selection of targeted CARS scenarios.
- Experimentation and validation plan outline.
- CARS system design.
- Hosting platform trade-off study.
- System architecture trade-off structure.
- CARS implementation.
- CARS system assessment.
- Performance study.
- System validation execution.
- Controlled-environment and indicative experimentation.
- Experimentation campaign detailed definition.
- Experimentation campaign execution.
- Controlled-environment and indicative experimentation.

Page 7

Experimentation campaign detailed definition.

Agenda

Introduction

Project plan

Accomplished work

State-of-the-art review, scenario selection

System definition, design, development and validation

Real-world experimentation

Main conclusions and way forward

Questions and Answers

State-of-the-art review, scenario selection (1/4): Crisis recovery systems

Crisis	Link Topology		Antenna conf.		Operation freq.	Link budg	et figures	Mobility		
recovery systems	Position Tx	n Rx	Tx-Rx Elev. angle	Tx	Rx	[MHz]	Tx. power [W]	Coverage [km]	Tx	Rx
Walkie- Talkies	O/I	O/I	Low	Omni	Omni	27, 49, ~460, ~900	0.5 - 5	~30	Static	Static
Amateur Radio	0	0	Variable	Omni	Omni	~140, ~440	up to 1500	>100	Static	Static
Trunking Radio	O/I	0	Low	Omni	Omni	~ 400, ~900	1.8	~60	Semi static	Static
COWs	O/I	0	Low	Omn	Omni	Variable	up to 100	5 -10	Semi static	Static
Satellite Phones	0	0	Variable	Omni	Drt	~1616 - 1626.5	up to 7	Global	Semi static	Mobile
MANET	0	0	Low	Omni/Drt	Drt	30 - 5000	~ 1.5	Variable	Semi static	Semi static
BSNET	O/I	O/I	Low	Omni	Omni	Variable	up to 100	Variable	Semi static	Static
Wireless Mesh	O/I	O/I	Low	Omni	Omni	Variable	~0.5	Variable	Semi static	Semi static
Wireless Balloon	0	O/I	High	Omni	Omni	Variable	up to 2.5	80	Static	Mobile

- There is no universal emergency/crisis recovery system able to operate in all environments.
- Focused on outdoor communications.
- Systems heavily network infrastructure dependant.

State-of-the-art review, scenario selection (2/4): GNSS systems

			,	(2, 1,1 2122 2, 2221)																			
CNICC	Link Topology		Antenna conf.			Link budget figures		Accuracy	Mobility														
GNSS	Posit	tion Rx	Tx-Rx Elev. angle	Tx	Rx	Operation freq. [MHz]	Tx. Power [W]	Coverage [km]	[m]	Tx	Rx												
GPS						L1: 1575.42 L2: 1227.6 L5: 1176.45	50 - 240		3														
GLONASS			O High	High	High	High	High	High	High	High								L1:1602 L2: 1246 L3:1201	20 - 135		2		
Galileo	0	0									Drt	Omn	L1: 1575.42 E5: 1191.795 E6: 1278.75	95 - 160	Global	1	Mobile	Semi static					
BeiDou															B1: 1575,42 B2:1191,79 B3: 1 268,52	130 - 185		1		Mobile			
IRNSS						L: 1164-1189 S: 2483.5-2500	40 - 120	Regional	10 - 20														

- Global Navigation Satellite Systems (GNSS) provides useful positioning information in crisis situations.
- · Coverage is global, but subjected to non-cluttered outdoor environments.
- Cluttered environments degrade performance -> there is a reliability on terrestrial infractucture.

State-of-the-art review, scenario selection (3/4): IPS systems

	Link Topology		Antenna conf.			Link budg	et figures		Mobility										
IPS	Posit Tx	Position Tx-Rx Elevation Tx Rx		Rx	Operation freq.[GHz]	Tx. power [mW]	Coverage [m]	Accuracy [m]	Tx	Rx									
RFID		I						Drt	Omn	~0.9	1000	<1	0.5						
BLE												Omni/Drt	Omni/Drt	2.4	0.005 - 3.2	>50	2 - 4		
Wi-Fi										Omni/Drt	Omn	2.4, 5	100	>150	5 - 15				
ZigBee												Omn	Omn	0.7 - 0.9, 2.4	10-100	10 - 20	<1	Ctatio	Semi
UWB	I		Low	Drt	Drt	3.1-10.6	0.5	10 - 150	0.001	Static	static								
IR						-	-	400000	-	Limited to	<1		Mobile						
VLC															-	-	450000-790000	-	line-of-sight
Ultra- sound				-	-	0.001-0.01	-	-	<1										
Magnetic				-	-	-	-	-	<2	-									

- · RF-base indoor localization is accurate only when using UWB technologies.
- There is no universal PNT system that operates in all scenarios.

State-of-the-art review, scenario selection (4/4): Conclusions

Conclusions

- Next generation CARS should be able to operate in any type of disaster scenarios.
- · Other scenarios where GNSS-based navigation/current IPS are not reliable should be also considered.
- Focus is to be put in **challenging scenarios**, with a system able to operate in:
 - **Urban scenarios** such as urban canyons or extremely shadowed/cluttered positions.
 - **Disaster scenarios**, which typically present different propagation profiles.

This aforementioned puts the focus in **indoor** and deep-indoor scenarios.

System definition, design, development and validation (1/5): CREAM & DREAM selection

- · Software Defined Radio (SDRs) were chosen for the PoC hardware.
 - It is widely known the broad configuration range and reliability that SDRs provide.

USRP E312 (CREAM, transmitter)

USRP X310 (DREAM, receiver)

System definition, design, development and validation (2/5): CREAM platform selection

Study was undertaken in order to find out the most suitable CREAM platform, based on the following KPIs:

- Cost
- Weight it can carry
- Size it can accommodate
- Antenna mountings it can offer
- Resilience to environmental conditions
- How rapidly it can be deployed
- Operational time
- Control range
- Dynamics
- Geometry diversity it can provide

Drone stood out as the platform that provides better KPI trade-off.

First ever Low-RF drone test

System definition, design, development and validation (3/5): CREAM – DREAM RF link

© GMV NSL Property - All rights reserved Page 17 10/06/2022

System definition, design, development and validation (4/5): Signal propagation

Initially and taking ESA's input, three frequencies were selected for testing:

- 113 MHz (VHF)
- 225 MHz (VHF)
- 400 MHz (UHF)
- 500 MHz (UHF)

All the selected are allocated frequencies, UK Spectrum Regulator (OFCOM) was contacted in order to obtain test frequencies. OFCOM granted the following:

- · 113 MHz
- · 133 MHz
- · 144 MHz
- 272,25 MHz
- 325 MHz
- · 350.5 MHz
- 401.5 MHz
- 500 MHz

RETEVIS RT20 Dual-band 144 MHz / 430 MHz

RETEVIS RT1/3 UHF 400 MHz - 520 MHz

System definition, design, development and validation (5/5): Frequency selection

- · Distance: 8 m.
- Both CREAM and DREAM are located in the same corridor, facing each other in a straight line.
- Corridor setting is likely to cause impaired signal due to reflections.

Antenna	Run#	Frequency /MHz	Bandwidth /MHz	Status	Description
	1	113	10	ОК	100 % worked
	2	113	1	N/A	Data not collected
	3	133	10	ОК	100 % work
	4	133	1	N/A	Data not collected
	5	144	10	Fair	50 % work
	6	144	1	N/A	Data not collected
SHORT	7	272.25	10	N/A	Data not collected
(Antenna 1)	8		1	Bad	Worked < 50 % of success rate
	9	325	10	N/A	Data not collected
	10	325	1	Not OK	Did not work
	11	350.5	10	N/A	Data not collected
	12	350.5	1	ОК	Worked > 90% success rate
	13	404.5	10	N/A	Data not collected
	14	401.5	1	Not OK	Did not work
	15	401.5	10	ок	Worked > 90 % success rate
LONG	16	401.5	1	No <mark>t OK</mark>	Did not work
antenna (Antenna 2)	17	500	10	ок	100 % work
	18	500	1	Not OK	Barely worked with < 10 % success rate

Results summary

System definition, design, development and validation (5/5): Frequency selection

Location	CREAM – DREAM distance	Surroundings	Comments
GMV NSL Nottingham	40 m	CREAM and DREAM are located in line of sight, with no obstacles.	-
GMV NSL Nottingham	60 m	CREAM and DREAM are located in line of sight, with no obstacles.	-

Results summary

Antenna	Run#	Frequency /MHz	Bandwidth /MHz	Status	Description
SHORT antenna	1	113	10	Fair	Worked with < 33 % success rate
(Antenna 1)	2	133	10	Ok	100 % worked
	3	401.5	10	Ok	Worked with > 80 % success rate
	4		1	Not ok	Worked with < 20 % success rate
LONG antenna (Antenna 2)	5		10	Ok	Worked 100 %
(6	500	10 (60m)	Ok	Worked 100 %
	7		1	Not ok	Work with < 50 % success rate

System definition, design, development and validation

Real-world experimentation (1/8): Experimentation scenario overview

Real-world experimentation (2/8): Calibration

Traditional building

Thermo-efficient building

Real-world experimentation (2/8): Calibration

Frequency	Effective penetration loss (traditional building)
133 MHz	10.4
401.5 MHz	16.0
500 MHz	8.6

Frequency	Effective penetration loss (thermal-efficient building)
133 MHz	15.2 dB
500 MHz	25.2 dB

Experimentation results (3/8): System performance validation

Real-world experimentation (3/8): System performance validation

10/06/2022

Real-world experimentation (3/8): System performance validation

Real-world experimentation (4/8): System performance validation results (traditional)

Page 28

Outdoor scenario

Indoor scenario

Real-world experimentation (4/8): System performance validation results (traditional)

Outdoor scenario

$f = 133 \text{ MHz}, d_C = 540 \text{ m}$ $f = 133 \text{ MHz}, d_{C} = 2 \text{ km}$ Rate [%] Success Rate [%] Acquisition Tracking Positioning $h_c = 7.5 \text{ m}$ $h_{c} = 20 \text{ m}$ $f = 401.5 \text{ MHz}, d_0 = 540 \text{ m}$ $f = 401.5 \text{ MHz}, d_C = 2 \text{ km}$ _≥ 100 Acquisition Tracking Positioning $h_{c} = 30 \text{ m}$ $h_c = 2.5 \text{ m}$ $h_c = 7.5 \text{ m}$ $h_c = 20 \text{ m}$ $h_c = 75 \text{ m}$ $f = 500 \text{ MHz}, d_C = 540 \text{ m}$ $f = 500 \text{ MHz}, d_C = 2 \text{ km}$ Success Rate [%] Acquisition Tracking Positioning h = 12.5 m h = 17.5 m h = 30 m h = 110 m d_C: CREAM Distance

Indoor scenario

Real-world experimentation (5/8): System performance validation results (thermo-eff)

AALBORG UNIVERSITY

Real-world experimentation (5/8): System performance validation results (thermo-eff)

Real-world experimentation (6/8): LEO pass emulation

Real-world experimentation (6/8): LEO pass emulation

 Projection of a LEO pass at 500 km into a 40 m height was carried out by extrapolating a LEO orbit into 40 m height and map associated positions

Elevation range evaluated corresponds to [10°, 170°]

Real-world experimentation (7/8): LEO pass emulation results

Real-world experimentation (7/8): LEO pass emulation results

Experimentation results (8/8): extrapolation to LEO orbit

—— trad.building, f=133MHz, outdoor
 — trad.building, f=133MHz, indoor gnd.floor
 - ⊖ - trad.building, f=133MHz, deep-indoor, gnd.floor ··△····trad.building, f=133MHz, indoor 1st.floor trad.building, f=401.5MHz, outdoor - ⊕ - trad.building, f=401.5MHz, indoor gnd.floor - - - trad.building, f=401.5MHz, deep-indoor, gnd.floor trad.building, f=401.5MHz, indoor 1st.floor trad.building, f=500MHz, outdoor — = —trad.building, f=500MHz, indoor gnd.floor - · ⊖ · - trad.building, f=500MHz, deep-indoor, gnd.floor therm.eff.building, f=133MHz, outdoor - = − therm.eff.building, f=133MHz, indoor gnd.floor therm.eff.building, f=500MHz, outdoor therm.eff.building, f=500MHz, indoor gnd.floor ideal receiver sensitivity level=-158.5dBm

Agenda

Project Introduction

Project plan

Work summary

Main conclusions and way forward

Questions and Answers

Main conclusions and way forward

Contract conclusions

- This project shows the successful first-stage development of a flexible and fast-deployable CARS based on SDR systems.
- The first stage of the development demonstrates 133 MHz, 401.5 MHz and 500 MHz provide promising results in terms of signal propagation and navigation capabilities.
 - The PoC is based on a single Tx-Rx system with Spread-Spectrum signals.
- Experimentation in relevant environments has been carried out to validate the developed proof-ofconcept system.
- Experimentation resembling **LEO satellites geometry** have been carried out in order to verify the validity of the system for the LEO-PNT case.

Main conclusions and way forward

What's next?

gmvnsl.com

Thank you

Low-RF Team

GMV NSL

Alejandro Pérez Conesa, David Payne, David Scott, Wahyudin P. Syam

AAU

Enric Juan Martínez, Ignacio Rodríguez Larrad, Melisa María López Lechuga

