Low-RF
Fast Deployable Systems for Emergencies in Difficult Environments
Agenda

Introduction

Project plan

Work summary

Main conclusions and way forward

Questions & Answers
Project Introduction

Project objective

• Crisis modes are unexpected and can take place anywhere and anytime.

“[…] it is clear that current solutions, especially GNSS-based ones, are not adequate to support the navigation functions required for crisis modes.”

GMV NSL & AAU @ ION GNSS+ 2022

• The objective of this contract is to design and develop a PoC for a Civilian and Assets Recovery System (CARS), conformed by two main elements:
 • Crisis Recovery and Emergency Assistance and Management segment (CREAM). System transmitter.
 • Device for the Recovery and Emergency Assistance and Management segment (DREAM). System receiver.
Agenda

Introduction

Project plan

Project overview

Project work structure

Overview of conducted tasks

Work summary

Main conclusions and way forward

Questions and Answers
Project plan

Project overview

Task 1
Survey and definition
WP 1000
WP 2000

Task 2
System development
WP 3000

Task 3
Experimentation
WP 4000
WP 5000
Project plan

Project work structure

WP 0000
Management and coordination

WP 1000
CARS Use Cases, System Requirements and System Specification Definition

WP 3000
CREAM & DREAM Breadboard Development, Integration and Factory Testing

WP 5000
Final Reporting, Acceptance Testing and Exploitation Assessment

WP 2000
CREAM and DREAM Breadboard Detailed Design

WP 4000
CREAM & DREAM PoC Breadboard Validation
Overview of conducted tasks

- Review of existing recovery systems.
- Selection of targeted CARS scenarios.
- Experimentation and validation plan outline.
- CARS system design.
- Hosting platform trade-off study.
- System architecture trade-off structure.
- CARS implementation.
- CARS system assessment.
- Performance study.
- System validation execution.
- Controlled-environment and indicative experimentation.
- Experimentation campaign detailed definition.
- Experimentation campaign execution.
- Controlled-environment and indicative experimentation.
- Experimentation campaign detailed definition.
Agenda

Introduction

Project plan

Accomplished work

State-of-the-art review, scenario selection

System definition, design, development and validation

Real-world experimentation

Main conclusions and way forward

Questions and Answers
Accomplished work

State-of-the-art review, scenario selection (1/4): Crisis recovery systems

<table>
<thead>
<tr>
<th>Crisis recovery systems</th>
<th>Link Topology</th>
<th>Antenna conf.</th>
<th>Operation freq. [MHz]</th>
<th>Link budget figures</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Position</td>
<td>Tx-Rx Elev. angle</td>
<td>Tx</td>
<td>Rx</td>
<td>Link power [W]</td>
</tr>
<tr>
<td>Walkie-Talkies</td>
<td>O/I</td>
<td>Low</td>
<td>Omni</td>
<td>Omni</td>
<td>27, 49, ~460, ~900</td>
</tr>
<tr>
<td>Amateur Radio</td>
<td>O/O</td>
<td>Variable</td>
<td>Omni</td>
<td>Omni</td>
<td>~140, ~440</td>
</tr>
<tr>
<td>Trunking Radio</td>
<td>O/O</td>
<td>Low</td>
<td>Omni</td>
<td>Omni</td>
<td>~400, ~900</td>
</tr>
<tr>
<td>COWs</td>
<td>O/O</td>
<td>Low</td>
<td>Omni</td>
<td>Omni</td>
<td>Variable</td>
</tr>
<tr>
<td>Satellite Phones</td>
<td>O/O</td>
<td>Variable</td>
<td>Omni</td>
<td>Drt</td>
<td>~1616 - 1626.5</td>
</tr>
<tr>
<td>MANET</td>
<td>O/O</td>
<td>Low</td>
<td>Omni/Drt</td>
<td>Drt</td>
<td>30 - 5000</td>
</tr>
<tr>
<td>BSNET</td>
<td>O/I</td>
<td>Low</td>
<td>Omni</td>
<td>Omni</td>
<td>Variable</td>
</tr>
<tr>
<td>Wireless Mesh</td>
<td>O/I</td>
<td>Low</td>
<td>Omni</td>
<td>Omni</td>
<td>Variable</td>
</tr>
<tr>
<td>Wireless Balloon</td>
<td>O/O/I</td>
<td>High</td>
<td>Omni</td>
<td>Omni</td>
<td>Variable</td>
</tr>
</tbody>
</table>

- There is no universal emergency/crisis recovery system able to operate in all environments.
- Focused on outdoor communications.
- Systems heavily network infrastructure dependant.
Accomplished work

State-of-the-art review, scenario selection (2/4): GNSS systems

<table>
<thead>
<tr>
<th>GNSS</th>
<th>Link Topology</th>
<th>Antenna conf.</th>
<th>Operation freq. [MHz]</th>
<th>Link budget figures</th>
<th>Accuracy [m]</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Position</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tx</td>
<td>Rx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tx-Rx Elev. angle</td>
<td>Tx</td>
<td>Rx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS</td>
<td>O</td>
<td>O</td>
<td>High</td>
<td>L1: 1575.42</td>
<td>50 - 240</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L2: 1227.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L5: 1176.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLONASS</td>
<td></td>
<td></td>
<td></td>
<td>L1:1602</td>
<td>20 - 135</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L2: 1246</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L3: 1201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galileo</td>
<td></td>
<td></td>
<td>High</td>
<td>L1: 1575.42</td>
<td>95 - 160</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E5: 1191.795</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E6: 1278.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BeiDou</td>
<td></td>
<td></td>
<td>High</td>
<td>B1: 1575,42</td>
<td>130 - 185</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B2: 1191,79</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B3: 1 268,52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRNSS</td>
<td></td>
<td></td>
<td>High</td>
<td>L: 1164-1189</td>
<td>40 - 120</td>
<td>10 - 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S: 2483.5-2500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Coverage is global, but subjected to non-cluttered outdoor environments.
- Cluttered environments degrade performance - there is a reliability on terrestrial infrastructure.
Accomplished work

State-of-the-art review, scenario selection (3/4): IPS systems

<table>
<thead>
<tr>
<th>IPS</th>
<th>Link Topology</th>
<th>Antenna conf.</th>
<th>Operation freq.[GHz]</th>
<th>Link budget figures</th>
<th>Accuracy [m]</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Position</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tx</td>
<td>Rx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tx-Rx Elevation angle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tx</td>
<td>Rx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tx</td>
<td>Rx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Link budget figures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accuracy [m]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mobility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tx</td>
<td>Rx</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- RF-base indoor localization is accurate only when using UWB technologies.
- There is no universal PNT system that operates in all scenarios.
Accomplished work

State-of-the-art review, scenario selection (4/4): Conclusions

Conclusions

• Next generation CARS should be able to operate in any type of disaster scenarios.
• Other scenarios where GNSS-based navigation/current IPS are not reliable should be also considered.

• Focus is to be put in **challenging scenarios**, with a system able to operate in:
 • **Urban scenarios** such as urban canyons or extremely shadowed/cluttered positions.
 • **Disaster scenarios**, which typically present different propagation profiles.

This aforementioned puts the focus in **indoor** and **deep-indoor** scenarios.
Accomplished work

System definition, design, development and validation (1/5): CREAM & DREAM selection

- Software Defined Radio (SDRs) were chosen for the PoC hardware.
 - It is widely known the broad configuration range and reliability that SDRs provide.

USRP E312
(CREAM, transmitter)

USRP X310
(DREAM, receiver)
Accomplished work

System definition, design, development and validation (2/5): CREAM platform selection

Study was undertaken in order to find out the most suitable CREAM platform, based on the following KPIs:

- Cost
- Weight it can carry
- Size it can accommodate
- Antenna mountings it can offer
- Resilience to environmental conditions
- How rapidly it can be deployed
- Operational time
- Control range
- Dynamics
- Geometry diversity it can provide

Drone stood out as the platform that provides better KPI trade-off.

First ever Low-RF drone test
Accomplished work

System definition, design, development and validation

CREAM payload

(x_d, y_d, z_d)

(x_{s1}, y_{s1}, z_{s1})

(x_{s2}, y_{s2}, z_{s2})

(x_{s3}, y_{s3}, z_{s3})

(x_{s4}, y_{s4}, z_{s4})

L band

UHF, VHF bands

NAV data

GMV offices
Accomplished work

System definition, design, development and validation (3/5): CREAM – DREAM RF link
Accomplished work

System definition, design, development and validation (4/5): Signal propagation

Initially and taking ESA’s input, three frequencies were selected for testing:

- 113 MHz (VHF)
- 225 MHz (VHF)
- 400 MHz (UHF)
- 500 MHz (UHF)

All the selected are allocated frequencies, UK Spectrum Regulator (OFCOM) was contacted in order to obtain test frequencies. OFCOM granted the following:

- 113 MHz
- 133 MHz
- 144 MHz
- 272.25 MHz
- 325 MHz
- 350.5 MHz
- 401.5 MHz
- 500 MHz

RETEVIS RT20 Dual-band 144 MHz / 430 MHz
RETEVIS RT1/3 UHF 400 MHz – 520 MHz
Accomplished work

System definition, design, development and validation (5/5): Frequency selection

- Distance: 8 m.
- Both CREAM and DREAM are located in the same corridor, facing each other in a straight line.
- Corridor setting is likely to cause impaired signal due to reflections.

<table>
<thead>
<tr>
<th>Antenna</th>
<th>Range</th>
<th>Frequency / MHz</th>
<th>Bandwidth / MHz</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>113</td>
<td>10</td>
<td>OK</td>
<td>100% worked</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>Data not collected</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>133</td>
<td>10</td>
<td>OK</td>
<td>100% worked</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>Data not collected</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>144</td>
<td>10</td>
<td>Fair</td>
<td>50% worked</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>Data not collected</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>222.25</td>
<td>10</td>
<td>N/A</td>
<td>Data not collected</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>Data not collected</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>325</td>
<td>10</td>
<td>N/A</td>
<td>Data not collected</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>Data not collected</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>350.5</td>
<td>10</td>
<td>N/A</td>
<td>Data not collected</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>Data not collected</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>401.5</td>
<td>10</td>
<td>N/A</td>
<td>Data not collected</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>Did not work</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>401.5</td>
<td>10</td>
<td>OK</td>
<td>Worked > 90% success rate</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>Did not work</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>500</td>
<td>10</td>
<td>OK</td>
<td>100% worked</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>Barely worked with < 10% success rate</td>
<td></td>
</tr>
</tbody>
</table>

Results summary
Accomplished work

System definition, design, development and validation (5/5): Frequency selection

Results summary

<table>
<thead>
<tr>
<th>Antenna</th>
<th>Run#</th>
<th>Frequency [MHz]</th>
<th>Bandwidth [MHz]</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT antenna (Antenna 1)</td>
<td>1</td>
<td>11.3</td>
<td>10</td>
<td>Fair</td>
<td>Worked with < 33 % success rate</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13.3</td>
<td>10</td>
<td>Ok</td>
<td>100 % worked</td>
</tr>
<tr>
<td>LONG antenna (Antenna 2)</td>
<td>3</td>
<td>40.15</td>
<td>10</td>
<td>Ok</td>
<td>Worked with > 80 % success rate</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>401.5</td>
<td>1</td>
<td>Not ok</td>
<td>Worked with < 20 % success rate</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>400</td>
<td>10</td>
<td>Ok</td>
<td>Worked 100 %</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>500</td>
<td>10 (60m)</td>
<td>Ok</td>
<td>Worked 100 %</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1</td>
<td>Not ok</td>
<td></td>
<td>Work with < 50 % success rate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>CREAM – DREAM distance</th>
<th>Surroundings</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMV NSL Nottingham</td>
<td>40 m</td>
<td>CREAM and DREAM are located in line of sight, with no obstacles.</td>
<td>-</td>
</tr>
<tr>
<td>GMV NSL Nottingham</td>
<td>60 m</td>
<td>CREAM and DREAM are located in line of sight, with no obstacles.</td>
<td>-</td>
</tr>
</tbody>
</table>
Accomplished work

System definition, design, development and validation

CREAM platform
CREAM
DREAM
Accomplished work

Real-world experimentation (1/8): Experimentation scenario overview
Accomplished work

Real-world experimentation (2/8): Calibration

Traditional building

Thermo-efficient building
Accomplished work

Real-world experimentation (2/8): Calibration

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Effective penetration loss (traditional building)</th>
</tr>
</thead>
<tbody>
<tr>
<td>133 MHz</td>
<td>10.4</td>
</tr>
<tr>
<td>401.5 MHz</td>
<td>16.0</td>
</tr>
<tr>
<td>500 MHz</td>
<td>8.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Effective penetration loss (thermal-efficient building)</th>
</tr>
</thead>
<tbody>
<tr>
<td>133 MHz</td>
<td>15.2 dB</td>
</tr>
<tr>
<td>500 MHz</td>
<td>25.2 dB</td>
</tr>
</tbody>
</table>
Accomplished work

Experimentation results (3/8): System performance validation
Accomplished work

Real-world experimentation (3/8): System performance validation
Accomplished work

Real-world experimentation (3/8): System performance validation
Accomplished work

Real-world experimentation (4/8): System performance validation results (traditional)

Outdoor scenario

- $f = 133$ MHz, $d_C = 540$ m
- $f = 133$ MHz, $d_C = 2$ km
- $f = 401.5$ MHz, $d_C = 540$ m
- $f = 401.5$ MHz, $d_C = 2$ km
- $f = 500$ MHz, $d_C = 540$ m
- $f = 500$ MHz, $d_C = 2$ km

Indoor scenario

- $f = 133$ MHz, $d_C = 540$ m
- $f = 133$ MHz, $d_C = 2$ km
- $f = 401.5$ MHz, $d_C = 540$ m
- $f = 401.5$ MHz, $d_C = 2$ km
- $f = 500$ MHz, $d_C = 540$ m
- $f = 500$ MHz, $d_C = 2$ km

h_C: CREAM Height
d_C: CREAM Distance
Accomplished work

Real-world experimentation (4/8): System performance validation results (traditional)

Outdoor scenario

Indoor scenario
Accomplished work

Real-world experimentation (5/8): System performance validation results (thermo-eff)

Outdoor scenario

Indoor scenario
Accomplished work

Real-world experimentation (5/8): System performance validation results (thermo-eff)

Outdoor scenario

Indoor scenario

h_h: CREAM Height
d_d: CREAM Distance
Accomplished work

Real-world experimentation (6/8): LEO pass emulation
Accomplished work

Real-world experimentation (6/8): LEO pass emulation

- Projection of a LEO pass at 500 km into a 40 m height was carried out by extrapolating a LEO orbit into 40 m height and map associated positions.

Elevation range evaluated corresponds to $[10^\circ, 170^\circ]$
Accomplished work

Real-world experimentation (7/8): LEO pass emulation results

Traditional building

Thermo-efficient building
Accomplished work

Real-world experimentation (7/8): LEO pass emulation results

Traditional building

Thermo-efficient building
Accomplished work

Experimentation results (8/8): extrapolation to LEO orbit
Agenda

Project Introduction

Project plan

Work summary

Main conclusions and way forward

Questions and Answers
Main conclusions and way forward

Contract conclusions

• This project shows the **successful first-stage development of a flexible and fast-deployable CARS based on SDR systems.**

• The first stage of the development **demonstrates 133 MHz, 401.5 MHz and 500 MHz provide promising results** in terms of signal propagation and navigation capabilities.
 - **The PoC is based on a single Tx-Rx system** with Spread-Spectrum signals.

• **Experimentation in relevant environments has been carried out** to validate the developed proof-of-concept system.

• Experimentation resembling **LEO satellites geometry** have been carried out in order to verify the validity of the system for the LEO-PNT case.
Main conclusions and way forward

What’s next?

- Extend analysis to other frequencies (S band, C band, higher UHF band)
- Platform design optimization
- Broaden test scenarios and buildings (including different Tx. platforms)
- Analyse other waveforms and signal designs
Thank you

Low-RF Team
GMV NSL
Alejandro Pérez Conesa, David Payne, David Scott, Wahyudin P. Syam

AAU
Enric Juan Martínez, Ignacio Rodríguez Larrad, Melisa María López Lechuga
Q&A